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Abstract: This paper presents an assessment of community resilience to coastal hazards in the Lower
Mississippi River Basin (LMRB) region in southeastern Louisiana. The assessment was conducted at
the census block group scale. The specific purpose of this study was to provide a quantitative method
to assess and validate the community resilience to coastal hazards, and to identify the relationships
between a set of socio-environmental indicators and community resilience. The Resilience Inference
Measurement (RIM) model was applied to assess the resilience of the block groups. The resilience
index derived was empirically validated through two statistical procedures: K-means cluster analysis
of exposure, damage, and recovery variables to derive the resilience groups, and discriminant analysis
to identify the key indicators of resilience. The discriminant analysis yielded a classification accuracy
of 73.1%. The results show that block groups with higher resilience were concentrated generally in the
northern part of the study area, including those located north of Lake Pontchartrain and in East Baton
Rouge, West Baton Rouge, and Lafayette parishes. The lower-resilience communities were located
mostly along the coastline and lower elevation area including block groups in southern Plaquemines
Parish and Terrebonne Parish. Regression analysis between the resilience scores and the indicators
extracted from the discriminant analysis suggests that community resilience was significantly linked
to multicomponent capacities. The findings could help develop adaptation strategies to reduce
vulnerability, increase resilience, and improve long-term sustainability for the coastal region.

Keywords: community resilience; Lower Mississippi River Basin; the Resilience Inference
Measurement (RIM) model; disaster recovery; coastal hazards; spatial analysis; multivariate statistics

1. Introduction

Coastal communities around the world are especially vulnerable to multiple threats and
hazards [1,2]. A major societal challenge is to ensure the safety and security of a population that is
continually threatened by natural hazards and periodically subjected to catastrophic disasters. The
Lower Mississippi River Basin (LMRB) in southeastern Louisiana is one of the most impacted and
vulnerable coasts in the continental USA. This area has been facing recurring threats from coastal
hazards, including large-scale, rapid-moving disasters such as hurricanes and storm surges and
slow-moving disturbances such as land subsidence and sea level rise. These hazardous events
have negatively impacted the communities in various degrees. The uneven responses and recovery
behaviors of the communities may be due to their spatial variation of exposure to natural hazards,
damage sustained, and social and environmental capacity [3–8]. Therefore, identifying the places
that are resilient to disasters and understanding the underlying indicators are critical for pre-disaster
preparation, post-disaster recovery, and establishment of mitigation plans.
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It is increasingly recognized that designing and implementing adaptive and mitigation community
management for coastal zone requires an integrated interdisciplinary approach. An important use
of resilience assessment is the identification of key indicators and how these various indicators
(e.g., social, economic, environmental) are connected to form resilience capacities [2,9]. This
information will help decision-makers in formulating better strategies to enhance community resilience.
Resilience assessment also deepens our understanding of which regions or communities have the
lowest or the highest resilience, and how the indicators can be used to monitor the progress of
communities in resilience building [9–15]. Resilience assessment can be used to provide guidelines for
allocating resources and infrastructure development, as well as for strengthening zoning regulations,
environmental sensitive area protection, and building codes to reduce vulnerability and risk [16].
However, a challenge remains in developing a framework that can empirically validate the resilience
assessment results and identify the underlying driving factors.

This study applies a newly developed community resilience measurement framework, the
Resilience Inference Measurement (RIM) model, to assess the community resilience to coastal hazards in
the Lower Mississippi River Basin region [7,8,17]. The RIM framework considers community resilience
as a broader concept and defines resilience as “the ability to prepare and plan for, absorb, recover
from, and more successfully adapt to adverse events” [4,5,7,18,19]. The RIM framework provides a
theoretically sound and practical approach to assess and validate the community resilience rankings
and scores. It uses three dimensions (exposure, damage and recovery) to denote two relationships
(vulnerability and adaptability). Both k-means clustering and discriminant analysis are employed to
derive the a priori and posterior resilience rankings and identify the key social-environmental indicators
to explain resilience. The method is based on the principle of empirical validation, and the derived
statistical functions can be used to infer (predict) resiliency in other similar study regions.

This study assesses the community resilience in the LMRB region at a fine geographic scale,
the census block group scale. The spatial variation of the resilience assessment in the study region
is examined. A regression analysis is conducted to examine the relationship between community
resilience and socio-environmental indicators. The results could serve as a useful tool for resilience
planning and management.

2. Assessing Community Resilience to Natural Hazards

Recent studies have developed a number of theoretical frameworks and indices to analyze
community resilience [4,7,8,18,20–23]. Some examples are described as follows. The Baseline Resilience
Indicators for Communities (BRIC), developed by Cutter and her research team [4,24], are designed to
be a comprehensive integration of all the components. The BRIC have six components, including social,
economic, infrastructural, institutional, community, and environmental. Each of the components has
several indicators that can be used to measure resilience at the community level. The selection of the
variables is based on the literature, and the method of aggregation is easy to compute and could be
applied for use in a policy context. The National Oceanic and Atmospheric Administration’s Coastal
Resilience Index (CRI) [25] is targeted primarily at coastal storms. The CRI utilizes six components:
critical facilities, transportation, community plans, mitigation measures, business plan, and social
system. Sherrieb and others [18] identified an exhaustive list of 88 variables and then used correlation
analysis to reduce the set into 17 variables representing two components, social capital and economic
development, as indicators of capacities for community resilience. Additional resilience-related indices
include the Predictive Indicator of Vulnerability [23], the Disaster Risk Index [26], the community
assessment of resilience tool [5], the Resilience Inference Measurement (RIM) index [7], and the Climatic
Hazard Resilience Indicator for Localities (CHRIL) [9].

The studies discussed above represent significant efforts in resilience index selection, model
conceptualization, and model construction. Ostadtaghizadeh et al. [27], in a systematic review on
community disaster resilience assessment models, concluded that existing community resilience indices
generally include five important domains (social, economic, institutional, infrastructural and natural)
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and there is a need to use appropriate and effective methods to quantify their relative contribution
to resilience.

However, validation of a resilience index with external reference data has posed a persistent
challenge [28]. Effort has been made to validate indices either externally with real observable
outcomes [29–31], or qualitatively with practitioners [32], or internally with sensitivity and uncertainty
analysis [28]. Nonetheless, studies that focus on the validation of resilience indices, either qualitatively
or quantitatively, are still uncommon. This is largely because community resilience is not a directly
observable phenomenon and the validation of resilience index requires the use of proxies [28].
Currently, there are no commonly recognized independent proxy data used in the validation of
resilience assessment. In many previous studies on resilience assessment, the lack of empirical
validation of variable selection and the impact of variables on resilience are considered serious
shortcomings [29].

3. Materials and Methods

3.1. Resilience Inference Measurement (RIM) Approach

This paper is based on a newly developed model, the Resilience Inference Measurement (RIM)
model [7,17]. The RIM model offers a method for assessing the indirectly observable community
resilience and validating the selection of capacity variables externally and internally. The method
was first applied to quantify resilience to climate-related hazards for 52 counties along the northern
Gulf of Mexico and yielded high classification accuracy (94.2%). The method has since been applied
to evaluate the resilience of the Caribbean countries to coastal hazards and earthquake resilience in
China [8,33].

As mentioned above, the RIM framework defines resilience as “the ability to prepare and plan for,
absorb, recover from, and more successfully adapt to adverse events” [5,7]. Specifically, the RIM model
uses three dimensions to denote two relationships (Figure 1). The three dimensions are the exposure
of a community to hazards (such as hurricane frequency), the damage a community suffered from
the exposure (such as property damage), and the recovery after disasters (such as population return).
Vulnerability and adaptability are two latent relationships between the three dimensions, whereas
resilience capacity, also a latent relationship, is indicated by both vulnerability and adaptability.
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Figure 1. The Resilience Inference Measurement (RIM) framework [7].

In the RIM model, vulnerability refers to the latent relationship between exposure and damage,
whereas adaptability indicates the latent relationship between damage and recovery [7]. If a community
(e.g., a block group) has high exposure to a hazard but sustains low damage, then the community
is considered to have low vulnerability. Similarly, if a community sustains high damage but has a
favorable recovery (e.g., return of population, infrastructure, or health status), then the community is
considered to have high adaptability. Resilience is measured based on the two relationships. A high
vulnerability/adaptability ratio is considered low resilience, whereas a low vulnerability/adaptability
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ratio is considered high resilience. The RIM model borrows the concept from the ecological resilience
literature and classifies resilience into four states; from low to high resilience they are called susceptible,
recovering, resistant, and usurper. These descriptive names used here to distinguish the four states of
community resilience were slightly modified from the ecological resilience literature and adopted into
the RIM framework to maintain consistency [17,34,35].

The actual process leading to these four states is more complex, which could involve two
underlying processes—mitigation and adaptation. Mitigation refers to the actions or strategies taken
to minimize the potential exposure. Adaptation refers to the measures applied to lessen the impacts
that result from the disastrous events so that the community can recover, such as raising the housing
structures above the flooding level to avoid serious damages from the next disaster [36]. The two
processes are highly interrelated and together they indicate resilience. It is expected that a community
that has capacity to generate effective mitigation strategies should also have the ability to adapt. In
terms of resilience index development, however, this paper focuses only on evaluating the conditions
of the three dimensions (exposure, damage, and recovery) and their relations with the underlying
capacities as represented by a number of socioeconomic and environmental indicators [7]. Moreover,
community resilience is a dynamic phenomenon, and vulnerability and adaptability change between
resilience cycles due to the repetition of external disturbances. However, the dynamic resilience
changes between disturbances are difficult to capture. For measurement purposes, the levels of
community resilience are measured at certain time points so that the scores can be used to monitor the
progress through time [4].

A major feature of the RIM model is empirical validation. The model uses real exposure,
damage, and recovery data to derive the index and the relative contributions of resilience indicators.
Two statistical techniques are involved when applying the RIM model. First, k-means clustering is
conducted to derive the a priori resilience classification based upon the three dimensions (exposure,
damage, recovery). Resilience groups are categorized into four states (susceptible, recovering, resistant,
and usurper). Once the resilience memberships of the communities are identified, discriminant analysis
is used to characterize the a priori resilience groups by a set of pre-disaster resilience capacity indicators.
These pre-event indicators are extracted from the literature to serve as typical proxies for evaluating
the community resilience spatially and temporally [20]. The posterior classification from discriminant
analysis is then compared with the a priori classification from k-means clustering, thus providing a
validation of the relative importance of the indicators.

The classification results from k-means clustering and the selected set of natural-human indicators
are the input for discriminant analysis. In discriminant analysis, the Mahalanobis distances from each
case (each community) to each of the resilience group centroids are calculated [37]. The probabilities of
membership belonging to each group are converted based on the Mahalanobis distances. The shorter
the Mahalanobis distance, the higher the probability this community belongs to the corresponding
resilience group. Each case is assigned to the group that has the highest probability of group
membership, which is also called the posterior group membership. To further explore the relationship
between community resilience and indicators, the discrete resilience categories can be converted to
continuous resilience scores based on the probabilities of group membership derived from discriminant
analysis [7,38]. The continuous resilience score of each block group can be calculated using Equation (1).

ReScore “
m

ÿ

i“1

iˆ Prob piq (1)

where m is the number of resilience groups from k-means clustering, i is the ranking of resilience
groups. Prob piq denotes the posterior probability of an individual case belonging to a particular
resilience group i.
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3.2. Study Area

This study focuses on southeastern coastal Louisiana, broadly recognized as the Lower Mississippi
River Basin (LMRB) (Figure 2). This area includes 26 parishes and three major metropolitan areas
(New Orleans, Baton Rouge, and Lafayette) in southern Louisiana. This region has been devastated by
storm surges, floods, and hurricanes. At least five hurricanes (Katrina, Rita, Gustav, Ike, and Isaac) hit
this region in the past decade (2005–2015), which caused significant loss of human lives and damages
to properties [39–45]. The most destructive natural disaster in the U.S. history, Hurricane Katrina,
crossed this region and caused severe destruction in August 2005. The most severe impact took place
in New Orleans where the death toll was about 1600. From 2005 (pre-Katrina) to 2012, the population
declined by 18.9% in Orleans Parish, 16.2% in Plaquemines Parish, and 35.9% in St. Bernard parish. In
addition, the unemployment rate increased by 2.6% during this period. With the impending threats
of climate change and sea level rise, this area is facing a serious challenge, which is how to develop
adaptation strategies to reduce vulnerability, increase resilience, and achieve coastal sustainability.

The study area has experienced different extents of exposure to coastal hazards and behaved
differently in different parts of the region after these disturbances. This makes the study area a test
bed for exploring the disaster resilience of places. The resilience analysis was conducted at the census
block group scale, with a total of 2086 block groups included in the study (24 block groups in the study
area were not included due to no data).
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3.3. Data Collection and Processing

3.3.1. Exposure, Damage, Recovery

The three dimensions (exposure, damage, and recovery) in the RIM model were defined as: (1) the
exposure to hazards, represented by the number of times a block group was hit by coastal hazards from
2000 to 2010, adjusted by the severity of the damage; (2) the damage from the exposure, represented by
the property damage caused by these coastal hazards recorded in exposure; (3) the recovery, represented
by population change from 2000 to 2010.

The exposure and damage data were derived from the Storm Event Database obtained from
the National Oceanographic and Atmospheric Administration’s (NOAA) National Climate Center



Water 2016, 8, 46 6 of 18

(NCDC) (https://www.ncdc.noaa.gov/). This data set contains a chronological listing of different
types of hazards, such as hurricanes, tornadoes, snow, droughts, and others. Five major types of coastal
hazards were considered in this study including storm surge, flood, hurricane, tropical storm, and
tornado. In the NOAA raw dataset, each hazard event was recorded with its beginning and ending
dates, event type, and property damages at one of the three geographic scales: point, city, or county
scale. Data at the point level include the X-Y coordinates that an event hit. Data at the city and county
levels list the cities or counties that an event affected.

To calculate the exposure and damage variables, the point data were tabulated according to the
block groups they belong to. For city and county data, a volume-preserving areal interpolation method
that distributes the value according to the developed land area was used to downscale the city- and
county-level data into block groups [46–48].

The exposure to coastal hazards in this study is a cumulative value from 2000 to 2010. To more
accurately represent exposure at the block group level, event duration, hazard frequency, and the
weight of hazards were taken into account instead of simply event frequency (Equation (2)) [7,17]. For
each block group x, the equation to calculate its exposure can be expressed as follows:

Exposure(x) “
5

ÿ

i“1

Nxi
ÿ

j“1

wipBeginDataij ´ EndDataijq (2)

where Nxi is the number of events of hazard type i occurred in block group x, j is the jth event, event
duration is derived from the difference of BeginDateij and EndDateij of event j of type i. Since this study
focuses on five types of coastal hazards that have different magnitudes, it is necessary to evaluate the
relative impacts pwiq of these five types of coastal hazards in order to integrate them into the exposure
dimension. For example, Hurricane Katrina was far more severe than a flood. wi is the weight of
hazard type i, which is the ratio of the total damage caused by hazard type i and the total damage
caused by all the five types of hazards (Equation (3)). Using the ratio between the total damage of
an event type and the total damage of all events as the weight of that event to its relative severity
would not create collinearity between the exposure and damage of each block group (Equation (4)). A
correlation analysis between the exposure (as defined by Equation (2)) and the damage (as defined
by Equation (4)) shows a low correlation (r = 0.142), given that some correlation between the two
dimensions should be expected.

wi “
Total Damage o f hazard i

Total Damage o f all hazards
(3)

The damage for each block group was the cumulative property damage caused by the events from
exposure divided by the population of the block group at the time of the event. Property damages
caused by natural hazards always occur in developed land areas (e.g., asphalt, concrete, buildings),
whereas barren land seldom has property damages. Based on this assumption, for each hazard event,
the total value of property damage of a city/county was distributed to the block groups according
to their developed land area. For example, if the developed land area of Block Group 1 in County A
accounts for 5% of the total developed land area in County A, where County A suffered a total property
damage of one million dollars from a hurricane event. Then, Block Group 1 is assigned 50 thousand
(5% ˆ1 million) dollars damage from this hazard. The cumulative property damage for each block
group is calculated by Equation (4).

Damage pxq “
ÿN

i“1

Damage piq ˆDvlp pxq
pDvlp pXq ˆ Pop pxqq

(4)

where Damage pxq = cumulative property damages of block group x during the ten year period; N is
the number of hazard events this block group suffered; i is a particular event and Damage piq is the
total property damage caused by this event as recorded in the raw data set; Dvlp pxq is the developed
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land area of this block group; Dvlp pXq is the developed land area of the city/county; Pop pxq is the
population of the block group x at the time of the event.

Studies have shown that recovery from a disastrous event takes an extensive amount of time,
often measured in years [29]. A content analysis study of community recovery indicators found
that population change/return was the most used recovery indicator in the disaster-focused journal
articles from 2000 to 2010, and a following Delphi survey showed that experts reached consensus
on its importance [49]. As stated in Lam et al. [7], population change over time reflects the wide
range of decisions made by individuals and businesses to remain in or move away from an area after
disturbances. It is a broad indicator of recovery that takes into account the rational behavior and
choices of residents and organizations to locate to communities in the area, even those with higher
levels of exposure to natural disturbances. Population change on its own may not necessarily indicate
recovery, but it is meaningful when evaluated in the context of exposure and damages from storms
and other natural disturbances over multiple years. Thus, population change between 2000 and 2010
at the block group level was used to indicate the recovery in this study. Population data were obtained
from the U.S. Census Bureau.

3.3.2. Community Resilience Indicators

Identifying pre-disaster resilience indicators is a critical step in community resilience analysis [20].
This study gathered a list of representative resilience capacity variables that were previously
discussed or utilized in the literature and also for data which are publicly accessible [4,5,26,50].
Twenty-five capacity indicators were selected, which cover multiple components of community
resilience (social, economic, infrastructure, community, and environmental) (Table 1). The five
components are the commonly acknowledged elements in grasping the multifaceted concept of
community resilience [4,5,51]. Indicators from other dimensions could also be taken into consideration,
such as those indicating social and cultural acceptability (organized beliefs of correctness, perceptions
of level of participation and inclusiveness, etc.). However, these soft variables could not be included in
this study due to their unavailability especially at such a geographical scale.

Table 1. Resilience Indicators.

Category Variables Justification

Social

% population over 65 years old Morrow (2008) [52]
Median age Cutter et al. (2010) [4]
Population density Ryu et al. (2011) [53]
% households without a vehicle Cutter et al. (2010) [4]
% housing units with telephone service available Cutter et al. (2010) [4]
% population over 25 but no schooling complete Cutter et al. (2010) [4]
% female householder Cutter et al. (2010) [4]

Economic

employment population per 10,000 lab forces Cutter et al. (2010) [4]
% population living in poverty Cutter et al. (2014) [24]
Median household income Sherrieb et al. (2010) [18]
Median value of owner occupied housing Cutter et al. (2014) [24]
Per capita income Lam et al. (2015) [7]
% population employed in construction, transportation, material moving NIST (2015) [51]

Infrastructure

% mobile homes Cutter et al. (2010) [4]
Total housing units per square mile Cutter et al.(2010) [4]
% housing units built after 2000 Cutter et al. (2010) [4]
Total length of roads per sq. km Cutter et al. (2010) [4]
Health care facility per 1,000 population Few (2007) [54]
Number of schools per sq.km Cutter et al. (2010) [4]

Community % population that were native born and also live in the same house or same county Cutter et al. (2010) [4]

Environmental

Mean elevation Cutter et al. (2010) [4]
% developed land area Cutter et al. (2008) [20]
Land loss area in sq.km from 2000 to 2010 The authors
% area in an inundation zone Cutter et al. (2008) [20]
Mean subsidence rate Zou et al. (2016) [55]

The census variables were collected from the U.S. Census Bureau (http://www.census.gov/)
and the National Historical Geographic Information System (https://www.nhgis.org/). Land cover
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variables were obtained from the National Land Cover Database (http://www.mrlc.gov/). Elevation
data were downloaded from the National Elevation Dataset (http://nationalmap.gov/elevation.html).
The land subsidence data were obtained from the National Geodetic Survey (NGS)
(http://www.ngs.noaa.gov/) database and then processed by the authors. Land loss rates
were tabulated by the authors using the raw data from the National Wetlands Research Center
(http://www.nwrc.usgs.gov/). Percent of area in an inundation zone was calculated using the raw
data from FEMA National Flood Hazard Layer (http://catalog.data.gov/dataset).

3.4. Clustering Resilience Groups

K-means clustering is an unsupervised classification method. It aims to partition n observations
into k (ďn) clusters such that the within-cluster sum of squares is minimized and each observation
belonging to the cluster has the nearest distance to its centroid [56]. Based on the three dimensions
(exposure, damage, recovery), k-means clustering was used to classify the block groups into different
resilience states.

Before conducting the k-means clustering analysis, each dimension was standardized into z-scores
(Equation (5)) to avoid the strong effect caused by different sizes of the three dimensions [57].

Zpxq “
x´ x

σx
(5)

where x and σx are the mean and standard deviation, respectively, of variable x.
An important step in k-means clustering is to identify the optimal number of strong clusters. One

efficient way is to identify from the scree plot where the sharpest drop of total within-cluster sum
of squares occurs when the observations are divided into different number of clusters [58]. Figure 3
shows how the total within-cluster sum of square of all the block groups decreases as the number of
clusters increases. The value of the total within-cluster sum of squares drops distinctly when moving
from 1 to 4 clusters. After 4 clusters, there is no significant drop. This confirms that the 4-cluster
solution defined in RIM model is reasonable for this study. Therefore a 4-cluster solution was used.
The centroid values of each cluster on the three dimensions were used to identify the resilience state of
the cluster.
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3.5. Discriminant Analysis of Resilience Indicators

K-means clustering classified the block groups into four resilience states. The next step is
to identify the underlying socioeconomic and environmental characteristics that can predict the
community resilience states. Discriminant analysis is an inferential statistical technique that is used
when the dependent variable is categorical and the independent variables are interval or ratio. It
involves deriving a linear combination of independent variables that can discriminate effectively
between a priori defined groups [37,59].
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Discriminant analysis requires the assumption of normality of the data set. In this study, normality
was tested both quantitatively by the Kolmogorov-Smirnov normality test and qualitatively by visual
inspection of the histograms. Although not all the variables were found to be strictly normally
distributed, they are fairly symmetrically distributed with minor positive or negative skewness. It has
been suggested that violation of the normality assumption is not fatal and that discriminant analysis
is still robust and reliable to minor violation of the assumption, especially when a large sample of
observations is used and the resultant classification accuracy is high [60].

Discriminant analysis with the stepwise option statistically reduces the number of variables from
an exhaustive list, and picks as few variables as possible to explain as much variance as possible [61].
It selects variables based on a pre-defined criterion (F-value > 3.84 in this study). The F-value for a
variable indicates its statistical significance in the discrimination between groups. In other words, it is
a measure of the extent to which a variable makes a unique contribution to the prediction of group
membership. Therefore, stepwise discriminant analysis also helps reduce the collinearity among the
original set of variables. The selected variables from this step will serve as independent variables in
the subsequent regression analysis.

To help explain the relationship between resilience scores computed from the discriminant
analysis procedure and the indicator variables, an ordinary least squares (OLS) regression analysis was
conducted. The continuous resilience score calculated from Equation (1) was used as the dependent
variable and the socio-environmental indicators selected from the stepwise discriminant analysis were
used as independent variables. Figure 4 explains the procedures employed in this study.
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4. Results and Discussion

During the ten-year study period, a total of 420 coastal-related hazard events severely affected this
study area, resulting in over 50 billion dollars of property damages. Figure 5 shows the spatial pattern
of the three dimensions in standardized z-values. Of the 2086 block groups, the highest exposure
values (>1.0 standard deviation) occurred in the parishes along the coastline (in the dark shade of
brown), such as Jefferson, Plaquemines, St. Bernard, and Lafourche. High per capita damage block
groups (>1.0 stand deviation) were found mostly along the Mississippi river in Plaquemines Parish and
in some parts of Orleans and Lafourche parishes. Block groups with the highest population increase
(>1.0 standard deviation) were scattered, with more of them located in the northern part of the study
area. Several block groups in southern Plaquemines Parish along the coastline lost all the population
in 2010 and became zero populated from 2000 to 2010. This area suffered the highest level of exposure
and was where intense land subsidence and land loss occurred.
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4.1. Spatial Variation of Community Resilience

As mentioned in Section 3.4 (k-means clustering), the block groups were clustered into four
community resilience types. The centroid of each type was used to characterize each resilience state.
The z-scores of the centroids in each type are shown in Table 2. Figure 6 is a 3-D plot of the four
centroids. By analyzing the behavior of the centroids of each type on the three dimensions (exposure,
damage, and recovery), we can rank them from 1 to 4 and name them from the lowest to highest
resilience as “susceptible”, “recovering”, “resistant”, and “usurper”, as in the RIM model [7,17].

Table 2. Z-scores of centroids of the four resilience types on the three dimensions.

Dimension Susceptible Recovering Resistant Usurper

Exposure ´0.61 ´1.02 2.61 0.06
Damage 0.95 ´0.11 0.05 ´0.09
Recovery ´0.27 ´0.58 0.65 1.60

As seen in Figure 6, a “susceptible” community generally has below-average exposure, high
damage, and the lowest z-score of recovery. This refers to a community that encounters severe
damage and cannot fully recover after a disturbance, which is the lowest resilience state. A
“recovering” community has below-average exposure, below-average damage, and average or slightly
above-average recovery. “Resistant” implies that a block group only has low damage even when
suffering high level of exposure and still recovers very well. A “usurper” block group not only can
resist disturbances but also prosper afterwards. From susceptible to usurper, the z-scores of recovery
increased steadily, indicating a positive relationship between community resilience and recovery
(population change). From k-means clustering, 521 block groups were clustered into susceptible state;
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1202 block groups were classified as recovering; 347 block groups were in resistant communities and
16 block groups were usurper (Table 3).Water 2016, 8, 46 11 of 18 
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Table 3. Comparison between the two classifications

K-Means
Discriminant Analysis

Total
Susceptible Recovering Resistant Usurper

Susceptible 326 166 23 6 521
Recovering 34 1114 46 8 1202
Resistant 63 81 202 1 347
Usurper 1 7 3 5 16

Total 424 1489 155 18 2086

The results from the stepwise discriminant analysis show that 73.1% of block groups were correctly
classified. The leave-one-out cross-validation was used to evaluate the robustness of the model in terms
of predictive accuracy when the model is constructed with one case (block group) being left out [62].
Specifically, discriminant analysis was run 2086 times. In each run, 2085 block groups were used as
the training set to develop the classification functions, and the functions were applied to predict the
membership of the remaining one block group. The prediction results from the 2086 iterations were
averaged to obtain the cross-validation accuracy (72.3%). The slight difference between classification
accuracy and cross-validation accuracy suggests that the model is fairly robust.

The community resilience maps derived from both k-mean clustering and discriminant analysis
are shown in Figures 7 and 8. Table 3 compares the classifications from the two analyses. The
misclassification means that a block group was classified by k-means into a resilience state based on
its values of exposure, damage, and recovery, but its social-environmental indicators do not seem to
suggest the same classification. Based on the discriminant analysis results (Figure 8), block groups
with higher levels of community resilience (usurper and resistant) formed clusters in areas north of
Lake Pontchartrain and along the Mississippi River in the area between Baton Rouge and New Orleans.
Susceptible block groups were in the south, mostly directly adjacent to the coastline.



Water 2016, 8, 46 12 of 18

Water 2016, 8, 46 12 of 18 

 

 
Figure 7. Community Resilience Classification from K-means Clustering. 

 
Figure 8. Community Resilience Classification from Discriminant Analysis. 

The four resilience states were denoted as 1 to 4 in discriminant analysis. Then, based on the 
probability of group membership, the continuous resilience score of each block group was calculated 
by Equation (1). The continuous resilience scores were divided into four levels, from 1.0–1.5, 1.6–2.5, 
2.6–3.5, and 3.5–4.0 to denote low, medium low, medium high, and high resilience, respectively 
(Figure 9). 

Figure 7. Community Resilience Classification from K-means Clustering.

Water 2016, 8, 46 12 of 18 

 

 
Figure 7. Community Resilience Classification from K-means Clustering. 

 
Figure 8. Community Resilience Classification from Discriminant Analysis. 

The four resilience states were denoted as 1 to 4 in discriminant analysis. Then, based on the 
probability of group membership, the continuous resilience score of each block group was calculated 
by Equation (1). The continuous resilience scores were divided into four levels, from 1.0–1.5, 1.6–2.5, 
2.6–3.5, and 3.5–4.0 to denote low, medium low, medium high, and high resilience, respectively 
(Figure 9). 

Figure 8. Community Resilience Classification from Discriminant Analysis.

The four resilience states were denoted as 1 to 4 in discriminant analysis. Then, based on the
probability of group membership, the continuous resilience score of each block group was calculated
by Equation (1). The continuous resilience scores were divided into four levels, from 1.0–1.5, 1.6–2.5,
2.6–3.5, and 3.5–4.0 to denote low, medium low, medium high, and high resilience, respectively
(Figure 9).
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The continuous score map portrays a pattern that is less discrete than the discriminant analysis
results, since the continuous scores were calculated based on a combination of group membership
probabilities. This final resilience score map shows that high and medium-high block groups were
concentrated north of Lake Pontchartrain and in areas surrounding the urban areas in East Baton
Rouge, Ascension, and Lafayette parishes. The least resilience block groups were dominantly in the
lower-elevation area proximate to the coastline.

4.2. Indicators of Community Resilience

Stepwise discriminant analysis selected 11 socio-environmental indicators out of the original 25.
The 11 indicators cover all five components of community resilience discussed in this study (Table 4).
The results from the OLS regression analysis allow us to examine the key indicators driving the
community resilience pattern throughout the study area. The value of R (0.889) in this regression model
indicates a significantly high correlation between the observed and predicted resilience scores (Table 4).
This indicates that the overall model is effective in explaining the indicators of community resilience.

Socioeconomic conditions played an important role in shaping community resilience. The results
in Table 4 suggest that increasing the percent of housing units with telephone service available would
help increase the community resilience score. Telephone service access has been used as an indicator
for communication capacity in several resilience indices [4,27,29]. It is essential for early warning and
community cohesion enhancement. The percentage of housing units with telephone service available
in this study area had a range from 0 to 100. Many block groups in the southern part had lower
than 50% coverage of telephone services. Median household income is also a significant, positive
predictor. In other words, communities with higher economic vitality can enhance their ability to
respond and recover from disasters because these communities have funds and resources available to
assist residents after disasters, thus increase its resilience [52]. Percent of female-headed households
had a negative impact on resilience (standardized coefficient of ´0.083). An anomaly is that the
poverty variable (percent of population living in poverty) had a positive standardized coefficient,
which is counter-intuitive. However, the coefficient is small (0.008) and not statistically significant. A
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closer look of the simple bivariate correlation between this variable and the resilience score shows a
negative correlation (´0.35). This poverty variable is also highly positively correlated with percent of
female-headed households (r = 0.74). Such an anomaly could occur in a multivariate analysis, when
“independent” variables are interacting among themselves, and sometimes make the interpretation
of the model results difficult [63]. We conducted an F-test to compare the two regression models
(with and without the poverty variable) and confirmed that the poverty variable was not significant
(p-value = 0.3457). Hence, removing the poverty variable or a variable highly correlated with poverty
for planning purposes could be a solution.

Table 4. Regression results of all variables with continuous scores.

Category Variable Coefficient Standardized Coefficient Significance

Social
% housing units with telephone service available 0.003 0.072 0.0000

% female-headed households ´0.002 ´0.083 0.0001

Economic
% population living in poverty 0.001 0.008 0.6435

Median household income 0.000 0.035 0.0318

Infrastructure

% population employed in construction,
transportation, material moving 0.006 0.065 0.0000

% housing units built after 2000 0.003 0.068 0.0000
Total housing units per square mile ´0.121 ´0.285 0.0000

Total length of roads per sq. km ´0.031 ´0.479 0.0000

Community % population that was native born and also lives in
the same house or same county ´0.011 ´0.324 0.0000

Environmental Mean subsidence rate
% area in an inundation zone

´0.026
´0.002

´0.162
´0.165

0.0000
0.0000

Constant 3.255 - 0.0000
n 2086 - -

Significance 0.000 - -
R 0.889 - -

Four significant predictors from the infrastructure component were derived; two (employment
rate in construction, transportation, and material moving and percent of housing units built after 2000)
contributed positively and the other two (housing density and road density) negatively to the resilience
score. Employment rate in construction, transportation, and material moving may indicate the capacity
of emergency preparedness and post-disaster debris removal, demolition, and reconstruction. Housing
units built after 2000 may imply a strong recovery process resulting from disturbances during the
study period. On the contrary, higher housing and road density could likely increase the damages
from the hazards, thus leading to lower resilience [9].

The percent of the population that was native born and also live in the same house or same
county, the only predictor extracted from the community component, was significantly negatively
related to the resilience score. Higher value of the percent of native-born population means lower
value of immigrant population. This variable may be both a cause and an effect. Higher immigrant
population may mean that the place has already had high utility that attracted migration. At the
same time, several studies have shown that immigrants strengthen community resilience with their
diversity of education, livelihood, and personal experiences [64]. When disaster strikes, a community
needs redundancy, alternatives, and backups in the system to recover. A diverse group of citizens that
possesses various capabilities and kinds of technical expertise can facilitate the recovery process.

Within the environmental component, mean subsidence rate and percent of area in an inundation
zone contributed negatively to resilience. Land subsidence would lead to widespread land loss along
the coastline and deterioration of ecosystem services. Ongoing sinking land surface would continually
cause more frequent floods and erode the ability of communities to recover from coastal hazards. When
large segments of a community are within the inundation zone, this community is under high risk of
coastal hazards such as flooding and storm surge, and is difficult to recover under frequent exposure.
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5. Conclusions

This paper quantitatively assessed and validated the community resilience of the 2086 block
groups in the Lower Mississippi River Basin using the Resilience Inference Measurement (RIM)
framework. Social-environmental indicators associated with the community’s ability to reduce damage
and recover from coastal hazards were identified. First, the block groups were clustered based on their
values on the three dimensions (exposure, damage and recovery). Four strong clusters corresponding
to the four states of resilience—susceptible, recovering, resistant, and usurper—were derived. Then,
stepwise discriminant analysis was conducted using 25 pre-event capacity indicators to investigate
the underlying factors associated with community resilience. A total of 11 indicators were extracted,
and a classification accuracy of 73.1% was achieved. These 11 variables suggest that community
resilience was shaped by multicomponent capacities (social, economic, infrastructure, community, and
environmental). Also, the leave-one-out cross validation resulted in an accuracy of 72.3%, confirming
the model robustness. The final continuous resilience score map shows that block groups with higher
resilience were concentrated in the northern part of the study area whereas block groups with low
resilience were dominantly proximate to the coast.

One major objective of this study was to provide the communities an easy-to-use resilience
assessment tool that can also be used to identify key indicators for managing and promoting resilience.
In order to further explore the relationships between the continuous resilience score and the selected
11 variables, a multiple regression was conducted, which led to a high R-value of 0.89. Of the ten
variables that were significant, percent of housing units with telephone service available and median
household income contributed positively to community resilience, whereas female-headed households
with children had a negative impact on resilience. In the economic component, percent of population
employed in construction, transportation, and material moving and percent of housing units built after
2000 promoted resilience by enhancing the ability of preparedness and post-disaster reconstruction. In
the infrastructure component, high housing and road density in this vulnerable coastal region seemed
to add more burdens to the community and increase the potential to suffer more property damages.
In the community component, the percent of the population that was native born was found to be
associated with resilience negatively. Finally, land subsidence and percent of inundation zone were
two major environmental factors that put this area under high risk of coastal hazards and weaken the
ability to recover.

The RIM model is one of the first empirically based approaches that aim at community resilience
measurement with validation. This study advances the application of the RIM model from coarse-scale
county level to fine-scale block group level so that important disparity within a county can be
captured. While the results derived from this study may be context, scale, and place specific, this
paper demonstrates that the RIM approach could be used as a tool to extract indicators to understand
and ultimately promote community resilience. With more analyses at different study areas or using
different time spans, it is possible to derive some common indicators that can be used to assess a wide
range of places and regions to enable comparisons across different coastal regions in the world.
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